Übersicht

Möchte man einen Algorithmus entwickeln, gibt es in der Regel zwei große Ansätze, die je nach Situation und Endanwendung zum Einsatz kommen:

TopicSupervisedUnsupervised
🎯 General FocusI/O is labeled (we already know what we are searching for)I/O is unknown. AI has to decide on the variables.
👨🏻‍🎓 Learning StyleBig Set of Reference Data - More Precise, but more work for the HumanTries to detect patterns from the Input. The Human must give “sense” to the Output (+ adjusting Parameters if needed)
🏁 GoalsTarget Results are already known. The AI helps in sorting the Data-Set and predicts the outcomeOut of a big set of Data and Variables, the AI tries to find correlations.
🤖 ApplicationSpamScanner, Forecasts, PricingFinding Anomalies, Recommendation Systems, Customer Personas, Medical Engineering (Images)
🕸 ComplexityRather “simple” Machine Learning (R / Python)High Complexity: needs a lot of Rechenpower and Data to be trained accordingly
⚠ DrawbacksNeeds a lot of time to develop. Human experts need to evaluate needed I/O firstCreates Random Results and need Human experts to give “sense” to the I/O the AI chose.

Sonstige Vermerke

Weiterführende Literatur

  1. ZK-006-PSY-Intelligenz - hoch vs. niedrig
  2. ZK-045-PSY-Alpha bis Omega - Persönlichkeiten to lead or follow suite
  3. ZK-072-EDU-Lernen mit vs. ohne Regelwerk (bsp. Musik und Schach)

Tags

TECH_ROBS_AI MANIPULATION MANAGEMENT LEARN_THINGS